منابع مشابه
Mannheim Offsets of Ruled Surfaces
In a recent works Liu and Wang 2008; 2007 study the Mannheim partner curves in the three dimensional space. In this paper, we extend the theory of the Mannheim curves to ruled surfaces and define two ruled surfaces which are offset in the sense of Mannheim. It is shown that, every developable ruled surface have a Mannheim offset if and only if an equation should be satisfied between the geodesi...
متن کاملthe involute-evolute offsets of ruled surfaces
in this study, a generalization of the theory of involute-evolute curves is presented for ruledsurfaces based on line geometry. using lines instead of points, two ruled surfaces which are offset in the senseof involute-evolute are defined. moreover, the found results are clarified using computer-aided examples
متن کاملOn the evolute offsets of ruled surfaces in Minkowski 3-space
In this paper, we classify evolute offsets of a ruled surface in Minkowski 3-space L with constant Gaussian curvature and mean curvature. As a result, we investigate linear Weingarten evolute offsets of a ruled surface in L .
متن کاملApproximation by ruled surfaces
Given a surface or scattered data points from a surface in 3-space, we show how to approximate the given data by a ruled surface in tensor product B-spline representation. This leads us to a general framework for approximation in line space by local mappings from the Klein quadric to Euclidean 4-space. The presented algorithm for approximation by ruled surfaces possesses applications in archite...
متن کاملCharacterizations of Slant Ruled Surfaces in the Euclidean 3-space
In this study, we give the relationships between the conical curvatures of ruled surfaces generated by the unit vectors of the ruling, central normal and central tangent of a ruled surface in the Euclidean 3-space E^3. We obtain differential equations characterizing slant ruled surfaces and if the reference ruled surface is a slant ruled surface, we give the conditions for the surfaces generate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2009
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2009/160917